
J Stat Phys (2008) 131: 269–303
DOI 10.1007/s10955-008-9501-7

On a Mathematical Framework for the Constitutive
Equations of Anisotropic Dielectric Relaxation

A. Hanyga · M. Seredyńska
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Abstract Three classes of time-domain non-relativistic anisotropic dielectric constitutive
equations of increasing generality are discussed. In each class dissipativity is ensured by
the choice of a class of convolution kernels in the D-to-E constitutive equation express-
ing the electric field E in terms of the electric displacement field D. Defining properties of
the inverse (E-to-D) kernels and their Fourier-Laplace transforms (complex dielectric func-
tions) are determined by inversion of the D-to-E constitutive equation. By this procedure it
is shown that dielectric functions of the dipolar dielectrics are tensor-valued Bernstein func-
tions while the dielectric functions of the Drude-Lorentz type are tensor-valued negative
definite functions. The properties of the complex dielectric permittivities are also deter-
mined for either class. The theory is applied to an exhaustive review of empirical response
functions of real dielectric materials encountered in the literature. Each class of convolu-
tion kernels is consistent with existence of a conserved energy, but in one case a strictly
dissipative energy can be constructed.

Keywords Dielectric · Relaxation · Anisotropy · Energy conservation · Completely
monotone function · Bernstein function · Negative definite function · Positive definite
function

Notations

Z+—the set of positive integers R—the set of real numbers
[a, b[—the set of real x satisfying C—the set of complex numbers

a ≤ x < b
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R+ := {x ∈ R | x > 0} R+ = {x ∈ R | x ≥ 0}
R− := {x ∈ C | Rex ≤ 0, Imx = 0} C

+ := {z ∈ C | Im z > 0}
C− := C \ R− M—the set of all the m×m complex matrices
δ—Dirac measure MR—the set of all the m × m real matrices
θ(t)—the Heaviside unit step func-
tion

I—the unit matrix

tα+ :=
{
tα, t ≥ 0
0, t < 0

, α ∈ C v · w := vkwk

z—complex conjugate of z ∈ C A†—Hermitian conjugate of matrix A
A ≥ 0 (A ∈ M) if u†Au ∈ R+ for all Re A := (A + A†)/2

u ∈ C
d

A > 0 (A ∈ M) if u†Au > 0 for all 〈f,φ〉—duality form on D′, D
u ∈ C

d , u �= 0
Df (t)—distributional derivative f ′—ordinary derivative
φ̇ := ∂φ/∂t f ∗ g(t) := ∫ ∞

−∞ f (t − s)g(s)ds

Fourier transform: Laplace transform:
f̂ (ω) := ∫ ∞

−∞ eiωtf (t)dt f̃ (q) := ∫ ∞
0 e−qtf (t)dt

M—the set of all the CM functions B—the set of all the Bernstein functions
F : ]0,∞[ → M F : [0,∞[ → M

D—the set of all the CPD functions P—the set of all the functions
F : [0,∞[ → M F : [0,∞[ → M such that

the convolution operator F∗ is passive
|H|—total variation of a tensor-valued S ′(X;V )—Schwartz space of tempered

Radon measure H distributions on X with values in V

D′(X;V )—the space of V -valued E ′(X;V )—the space of V -valued
distributions on X compactly supported distributions on X

1 Introduction

In view of the appearance of polarizable metamaterials whose properties can be designed
many intuitive assumptions about electromagnetic properties of matter have been called in
question. Since a large portion of dielectric relaxation theory is phenomenological, a formal
analysis of the principles underlying phenomenology and their consequences is needed.

Dielectric relaxation is commonly expressed in terms of complex permittivity [34, 39,
40, 54]. Experimental studies of dielectric relaxation are usually based on measurements
of polarization of dielectric samples subject to periodic electric fields. This explains the
prevalence of frequency-domain formulation in dielectric relaxation theory. Time-domain
approach provides however a more direct approach for the dielectric response to a suddenly
applied electric field.

Frequency-domain formulation of material response is inappropriate in problems involv-
ing nonlinear expressions which are local in time. In particular, thermodynamic consid-
erations involve bilinear expressions and therefore time domain formulation of dielectric
response is more convenient in this context.

Time-domain formulation of the response functions is better adapted for applying ther-
modynamic constraints. Time domain formulation allows the use of powerful concepts and
tools of harmonic analysis (positive definite functions, completely monotone functions) and
linear systems theory (passive operators).
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There are some analogies between dielectric relaxation (more precisely, gradual increase
in polarization following a sudden increase in electric field intensity) and viscoelastic creep.
In view of this analogy some methods and ideas developed for viscoelastic constitutive equa-
tions can be used in the formulation of dielectric relaxation. In both cases the same molecular
mechanisms are involved and the two relaxations are the object of the same experimental
studies.

There is an important difference between the two theories.
Empirical models of viscoelastic creep and relaxation in real materials are consistent with

the assumption of a non-negative relaxation spectrum. Under this assumption the relaxation
modulus is a locally integrable completely monotone (LICM) function and the creep compli-
ance is a Bernstein function. This framework is also appropriate for many phenomenological
models of dielectric relaxation in the frequency ranges where dipolar polarization prevails
[9, 18, 34, 39, 40, 54]. Dielectric relaxation in such materials can be attributed to a contin-
uum of Debye elements. In this context the convolution kernel in the constitutive E-to-D
equation (10) is a Bernstein function and the kernel in the D-to-E constitutive equation (16)
is LICM.

Ionic and electronic polarization relaxation involves resonance phenomena (Lorentz dis-
persion) and is therefore inconsistent with a non-negative relaxation spectrum. It therefore
requires a wider class of constitutive equations. It will be shown that in this case the convolu-
tion kernels in the constitutive E-to-D equations are causal negative definite function, while
the kernel in the D-to-E constitutive equation is a causal positive definite (CPD) function.
In particular, the derivative of the time-domain electric susceptibility function is assumed to
be a causal positive definite (CPD) function. The last assumption is consistent with the the-
ory of Tip [60] and some other work on dielectric materials [20]. Our approach provides an
explanation of Axiom (A2) in Tip’s theory [60] as well as its generalization to anisotropic
dielectrics. Another related theory, due to Glasgow et al. [25], is based on an assumption
called “passivity” by the authors. The “passivity” assumption in their paper is equivalent to
Re R̃(iω) < 0 for ω > 0 (restricted to the isotropic case) and therefore it is a strengthened
version of the inequality Re R̃(iω) ≤ 0 implied by the CPD assumption.

A third option is assuming that the constitutive operator mapping D to E is passive.
This assumption is a strengthened version of the previous one. It leads to the Herglotz-
Nevanlinna representation for the complex modulus in viscoelasticity and for the inverse
complex dielectric function [21, 41].

It is well-known in the mechanical community that many different constitutive energy
functionals can be associated with a given linear viscoelastic stress-strain constitutive rela-
tion [7]. The same situation occurs in dielectric relaxation [17]. A strictly dissipative energy
UD [29], derived from the Bernstein theorem [26, 66], a conserved energy UC [31, 58],
derived from the Bochner theorem [26] and the minimum stored energy [16, 17, 33] have
attracted most attention. The strictly dissipative energy UD decays monotonely in a closed
system. It can be defined for viscoelastic media with completely monotone relaxation mod-
uli. The conserved energy UC [58] can be constructed for a much larger class of viscoelas-
tic media with positive definite relaxation moduli. The conserved energy has been used to
obtain a Hamiltonian and Lagrangian formulation of viscoelastic theory [31]. The stored
energy in either case can be expressed in terms of a quadratic functional of a one-parameter
family of auxiliary fields [60], also known as internal variables [29, 30]. The current values
of the auxiliary fields represent the past histories of the strain rate. The auxiliary fields have
been successfully applied to eliminate histories in numerical wavefield computations (e.g.
in [45, 46]) as well as to formulate and prove the existence and uniqueness for the Cauchy
problem [27].
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Existence of a conserved energy suggests that intrinsic dissipation associated with di-
electric relaxation is compatible with a Hamiltonian formulation. A Hamiltonian theory of
dielectric relaxation is constructed in [60, 61] on the basis of the Bochner theorem and
in [21] on the basis of the Herglotz-Nevanlinna representation of Herglotz functions [24].
Some recent applications of dielectric relaxation theory (e.g. interactions between mole-
cules in the presence of a bulk dielectric material) necessitate quantum theory of dielectric
media and therefore also a Hamiltonian formulation of the classical theory of dielectric po-
larization. Following Tip’s method, the energy-momentum tensor of a polarizable and mag-
netizable medium was constructed by Stallinga in [59]. In our setting energy conservation
is rigorously linked to the strengthened dissipativity assumptions underlying the proposed
formalism.

In the usual formulation of dielectric relaxation theory the electric displacement field D
is expressed in terms of the electric field E. In the time domain the mapping of E to D
is a convolution operator. The inverse D-to-E constitutive relation is more appropriate for
thermodynamic analysis. The E-to-D constitutive equation is then obtained by inversion of
the D-to-E constitutive relation. Inversion of the constitutive equations has been the ob-
ject of many studies in viscoelasticity [28, 32] because experiments involve both creep and
stress relaxation data. We now extend to dielectric relaxation our earlier work on inversion
of anisotropic viscoelastic creep and relaxation. By this method we are able to show that in
dipolar dielectric media and, more generally, in dielectric media with non-negative relax-
ation spectra, the dielectric response function is a Bernstein function. In order to account
for Lorentz-dispersive media a broader class of convolution kernels is needed. By inversion
of the constitutive D-to-E equation we show that dielectric response function is a negative
definite function in this more general case.

The CPD and LICM response functions can be associated with two spectral represen-
tations, in terms of driven oscillators or in terms of Debye elements. Either of the repre-
sentations provides a basis for the definition of a formal energy density U . It should be
kept in mind that neither the continuum theory nor statistical physics provides an expression
for physical energy. The two energies are however useful in mathematical and numerical
applications.

In Sects. 3.2–3.3 three alternative frameworks for dielectric relaxation ensuring dissipa-
tivity are considered. In Sect. 3.2 passive and positive definite dielectric D-to-E response
functions are considered, while Sect. 3.3 is dedicated to completely monotone D-to-E re-
sponse functions. Criteria for the membership of each class are expressed in terms of com-
plex dielectric permittivity. In Sect. 4 inversion of the D-to-E constitutive equations leads
to a precise determination of the class of the corresponding E-to-D kernels. It is shown in
particular that the E-to-D kernels corresponding to the LICM D-to-E kernels are tensor-
valued Bernstein functions and that every tensor-valued Bernstein function corresponds to
a tensor-valued LICM D-to-E kernel. The E-to-D kernels corresponding to positive definite
D-to-E kernels are negative definite.

In Sect. 5 the theory is applied to the phenomenological models of dielectric relaxation
in real materials. Explicit expressions are obtained for the dielectric response function.

In Sect. 6 two alternative electromagnetic energy density functionals in a dielectric based
on the spectral representations are constructed.

The focus of the paper is dielectric relaxation. Due to the variety of magnetizable media
magnetization is outside the scope of the paper. It is however considered here inasmuch it is
a necessary complement for the Maxwell equations.

The constitutive equations are expressed in terms of convolution operators with respect
to the time variable in a fixed Lorentz reference frame, which can be construed as the rest
frame of the undeformable medium. The theory is thus non-relativistic.
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2 Energy Balance and Constitutive Equations

We shall use the Heaviside-Lorentz units with the time units chosen in such a way that the
speed of light c = 1. ρ and J denote the free charge density and the free current density.

The first two Maxwell equations [38, 44, 62]

∇ × E = −Ḃ (1)

∇ × H = Ḋ + J (2)

imply the Poynting identity

EḊ + HḂ = −div(E × H) − JE (3)

where J denotes the free charge current. The left-hand side of (3) will be considered as
electromagnetic power expended in the interaction of the field with the matter. The two
additional Maxwell equations are

div D = ρ (4)

div B = 0 (5)

where ρ denotes the free charge density. The charge conservation equation

ρ̇ + div J = 0 (6)

follows from (2, 4).
Comparison with viscoelasticity [32] suggests the following constitutive relations of dis-

persive dielectric and magnetizable rigid bodies

Ek = λkl ∗ Ḋl (7)

Hk = νkl ∗ Ḃl (8)

Jk = σkl ∗ El (9)

(k, l = 1,2,3). In tensor notation

E = � ∗ Ḋ (10)

H = N ∗ Ḃ (11)

J = S ∗ E (12)

where N, �,S are tensor-valued functions on R+ × R
d satisfying the causality requirement

N(t, x) = �(t, x) = S(t, x) = 0 for t < 0. The constitutive equations are local and spatial
dependence of the response functions does not play any role in our considerations. We shall
therefore ignore the dependence on x in the subsequent considerations. The material re-
sponse kernels N,� can be singular at 0.

We shall focus on dissipation associated dielectric polarization and assume that the
medium is an insulator (S = 0).

An alternative formulation is obtained by integration by parts

E(t) = �(0+)D(t) +
∫ ∞

0
�̇(s)D(t − s)ds (13)
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H(t) = N(0+)B(t) +
∫ ∞

0
Ṅ(s)B(t − s)ds (14)

provided N(s), �(s) have finite limits at s → 0 and are differentiable on R+. Note that the
kernel functions �, N appearing in (10–11) also appear as kernels in the quadratic functional
representing the electromagnetic power.

If R : R+ → MR satisfies the equations

R ∗ � = � ∗ R = t I, t > 0 (15)

then (10) is equivalent to

D = R ∗ Ė (16)

Similarly, if Q : R+ → MR satisfies the equations

Q ∗ N = N ∗ Q = t I, t > 0 (17)

then (11) is equivalent to

B = Q ∗ Ḣ (18)

Complex dielectric permittivity and complex magnetic permeability are given by the Fourier
transforms (−iω)R̂(ω) and (−iω)Q̂(ω) of DR and DQ.

The Laplace transforms of the material response functions R and Q satisfy the equations

R̃(p)�̃(p) = �̃(p)R̃(p) = p−2I (19)

Q̃(p)Ñ(p) = Ñ(p)Q̃(p) = p−2I (20)

Equations (8–7) are valid in the rest system of the body. Time-domain formulation of
dispersive constitutive equations allows covariant formulations if desirable. In addition,
(8–7) are also tailored to introduce two concepts of harmonic analysis which have proved
very useful in viscoelasticity [28, 29, 32]: positive definiteness and complete monotonicity,
as well as a related concept from the system theory: passivity [41, 63, 69].

3 Admissible D-to-E Kernels

3.1 A Necessary Condition for Dissipativity

Consider a non-deformable electromagnetically polarizable medium. The power expended
by the external agents on the medium is given by the expression

W := W0 + W1 (21)

where

W0 := EḊ + HḂ (22)

W1 := EJ (23)
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The dissipativity condition

∀T ∈ R

∫ T

−∞
W(t)dt ≥ 0 (24)

[17] is not sufficiently strong to rule out some non-physical processes. In a homoge-
neous polarizable medium it does not rule out the time-periodic homogeneous process
E(t),D(t),J(t) = −Ḋ(t), H = B = 0 with zero energy flux, zero power W and without
external sources. We shall therefore assume that

∀T ∈ R

∫ T

−∞
W0(t)dt ≥ 0 (25)

∀T ∈ R

∫ T

−∞
W1(t)dt ≥ 0 (26)

If D = cos(ωt)D0, D0 ∈ R
3, then

E = 2ω
[
Im �̃(iω) cos(ωt) − Re �̃(iω) sin(ωt)

]
D0

and the average power over a period T = 2π/ω is given by the expression

P := 1

T

∫ T

0
E(t)Ḋ(t)dt = ω2D

0 Re �̂(ω)D0

Equation (25) is satisfied for arbitrary D0 ∈ R
3 and ω ∈ R if

Re �̃(iω) ≥ 0 ∀ω ∈ R (27)

In a smooth periodic electric field P = − ∫ T

0 D(t)Ė(t)dt/T . Consequently, if the con-
stitutive equation (10) can be expressed in the form D = R ∗ Ė then

Re R̃(iω) ≤ 0 ∀ω ∈ R (28)

Equation (28) also follows from (27) and (19). Inequality (28) is a generalization of
an inequality derived in [44]. Inequalities (28) and (27) are necessary but not sufficient to
ensure dissipativity.

3.2 Passive and Positive Definite Time-Domain Response Functions

Inequalities (25) and (26) are justified by the fact that they immediately translate into easily
verifiable spectral conditions. We shall focus on dielectric dissipation and set the resistivity
S ≡ 0.

We shall recast (25) in a more explicit form

1

2

∫ T

−∞

∫ t

−∞

[
Ḋ(t)�(t − s)Ḋ(s) + Ḃ(t)N(t − s)Ḃ(t − s)

]
ds dt ≥ 0 (29)

In order to obtain more restrictions on material response (29) will be extended to arbitrary
smooth compactly supported vector-valued test functions w:

∫ T

−∞

∫ t

−∞

[
ẇ(t)�(t − s)ẇ(s)

]
ds dt ≥ 0 (30)
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∫ T

−∞

∫ t

−∞

[
ẇ(t)N(t − s)ẇ(s)

]
ds dt ≥ 0 (31)

for all w ∈ D(R;R
m).

By D′+(R;V ) we denote the set of all the V -valued distributions on R with support
contained in [0,∞[. We shall often use the vector space V = R

d . In the following the term
matrix refers to an arbitrary d × d complex matrix.

Definition 3.1 ([41, 63, 69]) A convolution operator Lu := F ∗ u, F ∈ D′+(R;MR), satisfy-
ing ∫ T

−∞
u(t)(F ∗ u)(t)dt ≥ 0 ∀T ∈ R ∀u∈D(

R;R
d
)

(32)

is called passive.1

The set of distributions which are kernels of passive operators will be denoted by P.

The following theorem follows from the theory developed in [63, 69]:

Theorem 3.1 If the operator L = F∗ is passive, then F ∈ S ′+(R;MR).

Theorem 3.1 implies that the tensor-valued distribution F has a Fourier-Laplace trans-
form F̃, defined as a holomorphic function F̃(p + iq) satisfying

∫
F̃(q + ip)φ̂(p)dp = 〈F, eq φ̂〉

for every function φ ∈ S(R;R
d) and eq(t) := e−qt .

If the convolution operator �∗, defined by the constitutive equation (10), is passive, then
the electromagnetic work performed on the system in a cyclical process is non-negative.

Definition 3.2 A tensor-valued function F : R+ → MR is said to be causal positive definite
(CPD) if ∫ ∞

−∞
v(s)

∫ s

−∞
F(s − ξ)v(ξ)dξ ds ≥ 0 (33)

for every v ∈ D(R+;R
d).

Definition 3.3 A distribution F ∈ D′+(R;MR) is said to be causal positive definite (CPD) if
it satisfies ∫ ∞

−∞
u(t)F ∗ u(t)dt ≥ 0 ∀u∈D(

R;R
d
)

(34)

The set of causal positive definite distributions will be denoted by D.

In [69] such distributions are called semi-passive. In [63] they are called dissipative. In
[26] measures which are CPD distributions are called of positive type. Every CPD distribu-
tion is a tempered distribution [63].

1Note that the integrand is a continuous integrable function because F ∗ u∈E(R;R
d ).
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The kernel of a passive operator is a CPD distribution. The limit T → ∞ can be taken in
(32) for every u∈D(R;R

d).

Theorem 3.2 ([69], Theorem 8.12-1; [63], Theorem I in Sect. 3.17.3) F is the kernel of a
passive operator if and only if (i) F ∈ S ′+(R;MR), (ii) its Fourier-Laplace transform F̃(z)

is holomorphic in the right half of the complex plane (Re z > 0) and (iii) Re F̃(z) ≥ 0 for
Re z > 0.

The Herglotz-Nevanlinna representation theorem [24] implies the following formula for
a general tensor-valued function F̃ satisfying (iii):

F̃(z) = iA + zB +
∫ ∞

−∞

1 + iyz

z + iy
H(dy)

where A = Im F̃(1), B ≥ 0,

B = lim
y → ∞
Im z = 0

z−1F̃(z)

and H is a finite tensor-valued measure on R.

Theorem 3.3 ([69], Sect. 8.12) If F∗ is a passive operator, then

〈F,v〉 = Wv(0) − Av′(0) +
∫ ∞

0
J(t)v(t)dt +

∫ ∞

0
[J(0) − J(t)] v′′(t)dt ∀v ∈ D (35)

where W is a skew-symmetric matrix, A is a positive semi-definite matrix,

J(t) =
∫

]−∞,∞[
eiωtM(dω) (36)

and M is a finite MR-valued Radon measure on R such that M(U) ≥ 0 for every subset U
of R.

A tensorial version of the Bochner theorem [66] states that every CPD tensor-valued
function F(t) is the Fourier-Stieltjes transform of a positive Radon measure G(ζ ) (or, equiv-
alently, a non-negative distribution):

Theorem 3.4 ([26, 56]) If F(t) is a CPD tensor-valued distribution, then it is the dis-
tributional Fourier transform of a positive semi-definite tensor-valued tempered distribu-
tion G:

〈F,v〉 =
〈
G(ζ ),

∫
eiζ tv(t)dt

〉
∀v ∈ S(R;V ) (37)

where G(ζ ) = Re F̂(ζ ) and F̂ denotes the distributional transform of F.
If the tensor-valued function F(t) is locally bounded on R+, then it is the Fourier trans-

form of a positive tensor-valued Radon measure M

F(t) =
∫ ∞

−∞
eiζ tM(dζ ). (38)
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The Radon measure M is the real part of the distributional Fourier transform of F:
M(ζ ) = Re F̂(ζ ).

The class of passive operators is fully characterized by the following theorem:

Theorem 3.5 ([69], Theorem 8.14-1; [63], Theorem II in Sect. 3.17.4) F ∈ D′ is the kernel
of a passive operator if and only if it satisfies the following conditions:

(i) F is CPD;
(ii) F = D2F1 + ADδ, F1 ∈ C(R;MR) has tempered growth and A ∈ MR, A ≥ 0.

The following spectral criterion is more useful for verifying whether a frequency domain
material response is the Fourier transform of a CPD function:

Theorem 3.6 ([26], Theorem 16.2.4) If F : [0,∞[ → MR satisfies the condition
∫ ∞

0
e−pt |F(t)|dt < ∞ for every p > 0

then the following statements are equivalent:

(i) F is CPD;
(ii) Re F̃(p) ≥ 0 in a strip 0 < Rep < ε for some ε > 0;

(iii) lim inf p → iω
Rep > 0

Re F̃(p) ≥ 0 for ω ∈ R and lim inf |p| → ∞
Rep > 0

F̃(p) ≥ 0.

If the dielectric response function � ∈ D, then Re �̃(p) ≥ 0 on the imaginary axis
p = −iω, ω ∈ R and, in particular, (27) is satisfied. For comparison with the more familiar
isotropic case, assume that

�(t) =
3∑

k=1

λk(t)Pk (39)

R(t) =
3∑

k=1

rk(t)Pk (40)

where Pk , k = 1,2,3, are projections,
∑3

k=1 Pk = I. In this case Re λ̃k(iω) ≥ 0, provided the
limit p → iω, for real ω, exists, and therefore

Re r̃k(iω) = − 1

ω2

Re λ̃k(iω)

|λ̃k(iω)|2 ≤ 0, k = 1,2,3 (41)

The complex permittivity tensor [pR̃(p)]p=iω ≡ p−1�̃(p)−1 has a non-positive imaginary
part. In an isotropic dielectric with a complex permittivity ε

r̃k(−iω) = 1

−iω
ε(ω) = ε′(ω) + iε′′(ω) (42)

and

−Re r̃k(−iω) = ε′′(ω)

ω
≥ 0 for all non-zero ω ∈ R (43)
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The functions rk(t) are real-valued, hence r̃k(iω) = r̃k(iω) and therefore ε′′(ω) is an odd
function. Consequently (43) can be replaced by

ε′′(ω)

ω
≥ 0 ∀ω > 0 (44)

In [44] the last inequality is derived from the condition of non-negative average attenuation
in time-periodic wavefields.

3.3 Completely Monotone Time-Domain Response Functions

A tensor-valued function B is positive semi-definite (non-decreasing) if the function v†B(·)v
is non-negative (non-decreasing, respectively) for every v ∈ C

d .

Definition 3.4 A tensor-valued function F : R+ → MR is said to be completely monotone
(CM) if it is infinitely differentiable and for every vector v ∈ C

d

∀n ∈ Z+ (−1)nvDnF(t)v ≥ 0 (45)

The set of CM tensor-valued functions on R+ is denoted by M.

This definition has an obvious extension to functions defined on R with support in R+.

Proposition 3.7 If A ∈ MR and A ≥ 0, then A is a symmetric matrix.

Proof If A ∈ MR and A ≥ 0 then, substituting v = vR + ivI with arbitrary vR,vI ∈ R
d , we

have v
R AvI − v

I AvR ≥ 0 and A = A. �

Corollary 3.8 If A ∈ M, then A(t) = A(t) for all t > 0.

Theorem 3.9 (Bernstein Theorem, [26]) A tensor-valued function A : R+ → MR is CM
if and only if it is the Laplace transform of a positive semi-definite tensor-valued Radon
measure C,

A(t) =
∫

[0,∞[
e−rtC(dr) (46)

which satisfies the inequality
∫

[0,∞[
e−rt |C|(dr) < ∞ for t > 0

In the above theorem |C| denotes the total variation of the Radon measure C (cf. e.g.
[26]). An M-valued Radon measure B is positive if v†B(U)v ≥ 0 for every bounded mea-
surable set U ⊂ [0,∞[ and for every vector v ∈ C

d .

Theorem 3.10 Every positive semi-definite real tensor-valued Radon measure C on a mea-
surable space Q can be expressed as the product of a real Radon measure m and a positive
semi-definite tensor-valued density B defined m-almost everywhere and satisfying the in-
equalities |B(r)| ≤ 1 and vB(r)v ≥ 0 for m-almost all r in Q:

C(U) =
∫
U

B(r)m(dr)
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Proof Let m(U) denote the trace tr(C(U)) of C(U) for an arbitrary bounded measurable sub-
set U of Q. m is a positive real-valued Radon measure. For an arbitrary bounded measurable
subset U of Q and v,w ∈ R

d the quadratic form on R
2

vC(U)vξ 2 + 2vC(U)wξζ + wC(U)wζ 2 ≡ (ξv + ζw)C(U)(ξv + ζw)

is positive semi-definite. Consequently |wC(U)v| ≤ √
vC(U)vwC(U)w. Since

vC(U)v ≤ m(U)vv for arbitrary v,w ∈ R
d ,

|w†C(U)v| ≤ m(U)|v||w|
and therefore the Radon measure wC(U)v has a Radon-Nikodym derivative B(v,w)(r)

with respect to m, which is uniquely defined with a possible exception of a subset of [0,∞[
of measure 0. For m-almost-every value of r the expression B(v,w)(r) is a bilinear function
of its vectorial arguments. Choosing a basis e1, e2, . . . , ed and expressing v,w in terms of
this basis a tensor-valued function B(r) can be constructed in such a way that B(v,w)(r) =
vB(r)w. It is clear that |B(r)| ≤ 1 and vB(r)v ≥ 0 for m-almost all r ≥ 0 and all v ∈ R

d . �

Theorem 3.10 allows factoring the tensor-valued measure C(dr) into a scalar spectral
density m(dr) and a positive semi-definite tensorial density B, which characterizes the
anisotropic properties of the medium.

Applying Theorem 3.10 the tensor-valued Radon measure can be replaced by a positive
(scalar) Radon measure and a positive semi-definite tensor-valued density:

Theorem 3.11 A tensor-valued function A(t) is CM if and only if it is the Laplace transform
of a positive semi-definite tensor-valued function B : R+ → MR

A(t) =
∫

[0,∞[
e−rtB(r)m(dr) (47)

where m is a positive Radon measure satisfying the inequality
∫

[0,∞[
e−rt |B(r)|m(dr) < ∞ for some t > 0

while the function B is locally integrable with respect to m, positive semi-definite m-almost
everywhere and satisfies the condition

|B(r)| ≤ 1 m-almost everywhere

The integral in (47) can be replaced by the Lebesgue-Stieltjes integral with respect to the
non-decreasing right-continuous function μ defined by the formula μ(t) = m([0, t]). The
jump discontinuities of μ constitute a discrete relaxation spectrum, possibly embedded in a
continuous spectrum.

Phenomenological models of viscoelastic response in real materials assume that m(dr) =
h(r)d ln(r), where the function h is the relaxation spectrum density. In this case Theo-
rem 3.11 implies that h(r) ≥ 0. Relaxation in dipolar dielectrics has similar properties. The
idea of a distribution of relaxation times has been used in dielectric relaxation theory since
the pioneering work of Schweidler (1907) and Wagner (1913) [23, 54]. A more general
approach is adopted in this paper because it results in a manageable time-domain character-
ization of the material response.



On a Mathematical Framework for the Constitutive Equations 281

A function F ∈ M is continuous on ]0,∞[. It is therefore locally integrable (LI) every-
where except, perhaps, in a neighborhood of 0.

Definition 3.5 A tensor-valued function F : R+ → MR is said to be locally integrable com-
pletely monotone (LICM) (F ∈ MLI) if it is completely monotone and

∫ 1

0
|F(t)|dt < ∞

The LICM functions satisfy a sharper version of the Bernstein theorem:

Theorem 3.12 ([26]) If F : R+ → MR is LICM, then (46) and (47) hold with
∫

[0,∞[

|C|(dr)

1 + r
< ∞

and ∫
[0,∞[

m(dr)

1 + r
< ∞

respectively.

If F is LICM, then, by Theorem 3.12 and a theorem in [66], the double Laplace transform

∫ ∞

0
e−pt

[∫ ∞

0
e−rtF(r)|C|(dr)

]
dt =

∫
[0,∞[

1

p + r
|C|(dr) (48)

exists for t > 0. Consequently every LICM function possesses a Laplace transform.
Given a complex dielectric permittivity, the LICM property can be verified by means of

the following theorem:

Theorem 3.13 ([26], Theorem 5.2.6) The Laplace transform Ã of an LICM tensor-valued
function A has the following properties:

(i) Ã has an analytic extension to C
− := C \ R−;

(ii) Ã is real on R+;
(iii) Ã(p) → 0 for p → ∞ on R+;
(iv) Im Ã(p) ≤ 0 for Imp > 0;
(v) Im[pÃ(p)] ≥ 0 for Imp > 0 and Ã(p) ≥ 0 for p ∈ R+;

(vi) Re Ã(p) ≥ 0 for Rep > 0.

If an analytic tensor-valued function F(p) enjoys the properties (i)–(ii),

lim sup
p→∞

|F(p)| < ∞

and either (iv) or (v), then

(I) the limit

lim
p→∞ F(p) = F0

exists and is finite;
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(II) F(p) − F0 is the Laplace transform of an LICM function.

Remark If condition (ii) is relaxed to lim supp→∞ |Ã(p)| < ∞ along R+, then limp→∞ Ã(p)

= A0 exists, A = A0δ + G and G is LICM.

Corollary 3.14 If the tensor-valued function A is LICM, then A is CPD.

Proof By Theorem 3.12 the Laplace transform Ã(p) is absolutely convergent for p > 0.
Consequently (vi) in Theorem 3.13 combined with Theorem 3.6 (ii) implies that the function
A is CPD. �

4 E-to-D Constitutive Equations

4.1 Inversion of LICM Material Response Functions

Given an LICM tensor-valued function � : R+ → M, we shall consider the solutions R :
R+ → M of the equation

� ∗ R(t) = t I, t > 0 (49)

The problem can also be rephrased in terms of functions defined over the entire real axis.
Given a function � : R → M with support on R+, find a function R : R → M with support
on R+ satisfying the equation � ∗ R(t) = I for t > 0.

Equation (19) and Corollary 3.8 imply that the tensor-valued function R̃(p) is symmetric,
hence the complex dielectric function �̃(p) is a symmetric tensor.

Let R′ denote the ordinary derivative of the function R : R+ → M.

Definition 4.1 A tensor-valued function F : [0,∞[ → MR is said to be a Bernstein function
if it is infinitely differentiable and F(t) ≥ 0 for all t ≥ 0 and (−1)nDnF(t) ≤ 0 for t > 0 and
all the positive integers n.

The set of all the MR-valued Bernstein functions on [0,∞[ is denoted by B.

The derivative of a Bernstein function is thus a completely monotone function.
We shall prove in this section that the dielectric relaxation function � is a Bernstein func-

tion. We shall begin with a representation theorem for tensor-valued Bernstein functions.

Proposition 4.1 If R ∈ B, then the limits R0 := limt→0+ R(t), R1 := limt→0+ R′(t), R∞ :=
limt→∞ R′(t) exist and

R(t) = R0 + tR∞ + R2(t), t > 0 (50)

R2(t) :=
∫

]0,∞[

[
1 − e−rt

]
T(dr) (51)

where T is a positive tensor-valued Radon measure satisfying the inequality
∫

]0,∞[

r

1 + r
|T|(dr) < ∞ (52)

Conversely, if the function R : R+ → M is defined by (50–51), with an M-valued Radon
measure T on ]0,∞[ satisfying (52), then R ∈ B.
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Proof Assume that R ∈ B([0,∞[;M).
For every v ∈ C

d the function t → v†R(t)v is non-negative, non-decreasing on R+, hence
it has a finite limit R0(v). Therefore for every v and w in C

d

v†R(t)w ≡ 1

2

[
(v + w)†R(t)(v + w) − v†R(t)v − w†R(t)w

]

has a finite limit 1
2 [R0(v + w)− R0(v)− R0(w)] where R0(v) = v†R0v and R0 ∈ M, R0 ≥ 0.

Similarly, for every v ∈ C
d the function t → v†R′(t)v, t ∈ R+, is non-negative and non-

decreasing. Repeating the argument of the previous paragraph, we conclude that R′(t) has a
limit R1 at t → 0+.

By the Bernstein theorem

R′(t) =
∫

[0,∞[
e−rtM(dr) = R∞ +

∫
]0,∞[

e−rtM(dr) (53)

where R∞ = M({0}) ≥ 0 and ∫
]0,∞[

e−r |M|(dr) < ∞

R(t) will now be obtained by integrating the right-hand side of (53) over [0, t] and applying
the Fubini theorem. The formula

T(]0,R]) :=
∫

]0,R]

M(dr)

r

defines a Radon measure T satisfying
∫

]0,∞[
re−r |T|(dr) < ∞

such that (50) holds.
Since T is a positive tensor-valued measure, (52) is equivalent to the pair of inequalities

∫
]0,1[

r

1 + r
〈v,T(dr)v〉 < ∞ (54)

∫
[1,∞[

r

1 + r
〈v,T(dr)v〉 < ∞ (55)

Since 1/2 < 1/(1 + r) < 1 on ]0,1[, the first inequality is equivalent to
〈
v,

∫
]0,1[

rT(dr)v
〉
< ∞

and follows from the inequality 〈v,M(]0,1[)v〉 < ∞. Since 1/2 ≤ r/(1 + r) < 1 on [1,∞[,
the second inequality is equivalent to

〈
v,

∫
[1,∞[

T(dr)v
〉
< ∞ (56)

Inequality (56) follows from the following chain of inequalities:
(

1 − 1

e

)〈
v,

∫ ∞

1
r−1M(dr)v

〉
≤

〈
v,

∫ ∞

1

1 − e−rt

r
M(dr)v

〉
≤ 〈v,R(1)v〉 < ∞
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Equation (50), the inequalities R0,R∞ ≥ 0 and the fact that M is a positive M-valued mea-
sure have been used here.

In view of (52) and the inequality e−rt ≤ 1/(1+ rt), the derivative R′
2(t) of the third term

R2(t) in (50) tends to 0 for t → ∞, whence R′(t) has a limit R∞ for t → ∞.
Conversely, assume that the tensor-valued function R(t) is given by (50) with R2 given

by (51) with a Radon measure T on ]0,∞[ satisfying the inequality (52). Let R2(t) denote
the third term on the right-hand side of (50). We shall now prove that R2 has a derivative
which is a tensor-valued Bernstein function. Let h > 0,

R2(t + h) − R2(t)

h
=

∫
]0,∞[

[1 − e−rh]e−rt

h
T(dr) (57)

The function re−rt is integrable with respect to the measure 〈v,T(dr)v〉 on account of the
inequalities (52) and e−x ≤ 1/(1 + x), x ≥ 0. The inequality

1 − e−x ≤ x, ∀x ≥ 0

implies that the integrand of (57) is also integrable with respect to the measure 〈v,T(dr)v〉.
By the Lebesgue Dominated Convergence Theorem the left-hand side of (57) tends to

d〈v,R2(t)v〉
dt

=
∫

]0,∞[
re−rt 〈v,M(dr)v〉

which is a CM function by the Bernstein theorem. Consequently R2 is a Bernstein func-
tion. �

R1 and R∞ denote the instantaneous and relaxed dielectric permittivity, respectively. Note
that R has a finite limit at infinity if and only if

∫
]0,∞[ |T(dr)| < ∞ and R∞ = 0.

Theorem 4.2 If � : R+ → MR is LICM and

�(t1) > 0 (58)

for some t1 > 0, then there is a unique tensor-valued function R satisfying (15).
R : R+ → MR is a tensor-valued Bernstein function satisfying the equations

R(t) = R0 + R1(t), t ≥ 0 (59)

lim
t→0

R(t) = R0 ≥ 0, lim
t→∞ R1(t) = 0, t ≥ 0 (60)

R1(t) =
∫

]0,∞[

[
1 − e−rt

]
T(dt) (61)

where T is a positive tensor-valued Radon measure satisfying (52).
If �0 := limt→0 �(t) > 0, then limt→0 R(t) = �−1

0 .

Proof Since � ∈ M the Laplace transform �̃(p) exists for p ∈ C−.
By the Bernstein theorem � is the Laplace transform of a positive tensor-valued Radon

measure M. Consequently �̃ is the Stieltjes transform of M [66] and

p�̃(p) =
∫

[0,∞[

p

p + r
M(dr) (62)
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In particular v†p�̃(p)v ≥ 0. The integrand of (62) is an increasing function of p ∈ R+ and
the measure M is positive, hence v†p�̃(p)v is a non-decreasing function of p ∈ R+.

We now prove that the matrix �̃(p) is invertible for p ∈ C−.
Suppose that v†p2�̃(p2)v = 0 for some p2 > 0 and v ∈ C

d . The Radon measure
m = v†Mv is positive, hence (62) implies that the function g(r) := p2/(r + p2) vanishes
almost everywhere on [0,∞[ with respect to the measure m. The function g is everywhere
positive, hence m([a, b]) = 0 for every segment [a, b] and v†�(t1)v = 0, contrary to the
assumption (58).

Assume now that v†�̃(p2)v = 0 for some p2 ∈ C−, Imp2 �= 0. Since Im[p2/(p2 + r)] ≡
r Imp2/|p2 + r|2 > 0 for Imp2 > 0 and Im[p2/(p2 + r)] < 0 for Imp2 < 0, it follows again
from (58) that m([a, b]) = 0 for every b > a > 0, which in turn implies that v†�(t1)v = 0,
in contradiction with (62). This concludes the proof of invertibility of the operator p�̃(p)

for p ∈ C−.
Let μn(p), n = 1, . . . , d , be the eigenvalues of the operator p�̃(p). Since p�̃(p) is

real, positive and non-decreasing on ]0,∞[, the eigenvalues μn(p) are real and positive.
We shall assume that μn(p), p ∈ R+, are arranged in the increasing order, with account
of their multiplicities. It is shown in Appendix A that μn are non-decreasing functions of
p ∈ ]0,∞[. Consequently, the eigenvalues 1/μn(p), 1 ≤ n ≤ d , of the inverse matrix

F(p) :=
[
p�̃(p)

]−1
(63)

are positive and non-increasing on ]0,∞[. Hence lim supp→∞ 1/μn(p) < ∞, 1 ≤ n ≤ d , and
lim supp→∞ |F(p)| < ∞. Furthermore, the tensor-valued function F(p) is real on ]0,∞[ and
analytic on C−. By Theorem 3.13 (I) the limit limp→∞ F(p) =: A exists.

Let en, 1 ≤ n ≤ d , denote a base of unit eigenvectors of F(p) at a fixed p, where en

is the eigenvector corresponding to the eigenvalue μn(p). Expanding the vector v in the
eigenvector base

v =
d∑

n=1

cnen

we obtain

Im
[
pv†F(p)v

] =
d∑

n=1

|cn|2 Imλn(p)

|λn(p)|2 (64)

where λn(p) = μn(p)/p is an eigenvalue of the matrix �̃(p). By Theorem 3.13 (iv)
Im[v†�̃(p)v] ≤ 0 for every v ∈ C

d . Hence Imλn(p) ≤ 0 and Im[pv†F(p)v] ≥ 0. By the
second part of Theorem 3.13

F(p) = A +
∫ ∞

0
e−ptK(t)dt

where K is LICM, and limp→∞ K̃(p) = 0. By (19)

R̃(p) = 1

p

[
A + K̃(p)

]

and

R(t) = A + R1(t), t ≥ 0
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with R1(t) := ∫ t

0 K(s)ds. The functions R1 and R are Bernstein functions. Equation (61)
follows from Lemma 4.1. Equation (60)1 follows from (60)2.

The last statement follows from the identity

�0 = lim
p→∞p�̃(p) = lim

p→∞[pR̃(p)]−1 = R−1
0 �

In an isotropic polarizable medium �(t) = λ(t)I, N(t) = n(t)I, Q(t) = q(t)I, R(t) = E(t)I
and

λ ∗ E = t (65)

n ∗ q = t (66)

for t > 0. If �, N are CM, then the functions λ,n are CM. By a theorem in [29] the functions
q,E : R+ → R are non-negative and their derivatives are CM.

Theorem 4.3 If R ∈ B, R′(t2) > 0 for some t2 > 0 and R0 := limt→0 R(t) has an inverse,
then (15) has a unique solution �, � is LICM and limt→0 �(t) = R−1

0 .

Proof Since R′ ∈ M, Theorem 3.13 (iv) implies that Im[v†pR̃(p)v] ≤ 0 for every v ∈ C
d

and p ∈ C
+. By Theorem 3.13 p2R̃(p) is analytic on C−. Repeating an argument used in the

proof of Theorem 4.2, p2R̃(p) is invertible for all p ∈ C−. In view of (19) �̃(p) is analytic
on C−. All the eigenvalues of the matrix R̃(p), p > 0, are non-negative by Theorem 3.13 (ii)
and (vi). For all p > 0 the matrix �̃(p) is symmetric and therefore also positive semidefinite.

By Theorem 3.13 (v)

Im
[
v†p�̃(p)v

]
≡ − Im[v†pR̃(p)v]

|v†pR̃(p)v|2 ≥ 0

Furthermore, R ∈ B implies that R(t) ≥ R0 and therefore

p2R̃(p) ≡ p2
∫ ∞

0
e−ptR(t)dt ≥ pR0

Let λn(p), en(p) be an eigenvalue and the corresponding unit eigenvector of p2R̃(p). The
smallest eigenvalue ρ of R0 is positive, hence

λn(p) ≥ pen(p)†R0en(p) ≥ ρp

and λn(p)−1 ≤ ρ−1p−1 −→
p→∞ 0. The eigenvalues of �̃(p) = [p2R̃(p)]−1 are λn(p)−1, n =

1, . . . , d , hence limp→∞ �̃(p) = 0. Hence, using Theorem 3.13, � is LICM.
Finally

�0 = lim
t→0

�(t) = lim
p→∞

[
p�̃(p)

]
=

[
lim

p→∞pR̃(p)

]−1

= R−1
0 �

Material response of a real dielectric medium is usually represented in terms of the com-
plex permittivity E(ω).

Corollary 4.4 If the function � : ]0,∞[ → MR is LICM, then



On a Mathematical Framework for the Constitutive Equations 287

(i) the complex dielectric permittivity E(ω) ≡ R̃′(−iω) is analytic in the complex plane cut
along the negative imaginary axis;

(ii) on the positive imaginary axis E(ω) is real positive semi-definite and tends to zero as
|ω| → ∞;

(iii) Im E(ω) ≥ 0 for Reω > 0.

Proof Under the hypotheses of the corollary R′ ∈ M. The statements (i) and (ii) of the
corollary thus follow from Theorem 3.13 (i) and (ii). (iii) follows from Theorem 3.13 (v)
combined with the identity E(ω) = E(−ω). �

Since vR(t)v is non-decreasing and non-negative for every v ∈ R
d , the existence of

the limit R0 is granted. R0 however may not be invertible. If R0 is invertible, then �0 :=
limt→0 �(t) = R−1

0 . If � : ]0,∞[ → MR is an arbitrary tensor-valued LICM function, then
the existence of the limit �0 = limt→0+ �(t) is not granted. It is easy to show that (i) R0 = 0
if and only if the largest eigenvalue of �(t) is unbounded for t → 0+; (ii) R0 is invertible if
and only if all the eigenvalues of �(t) are bounded in a neighborhood of 0.

The function R has the properties of the viscoelastic creep compliance. In particular it
is a non-decreasing function, either bounded or unbounded. In physical terms the dielectric
polarization tends to increase as an increasing proportion of dipoles tends to adjust to those
already polarized by the external field.

If R is bounded, then for every vector w ∈ R3 the function wR(·)w is non-decreasing
and bounded hence it has a finite limit f (w). Consequently

2w
1 R(t)w2 = (w1 + w2)

R(t)(w1 + w2) − w
1 R(t)w1 − w

2 R(t)w2

has a finite limit at ∞ and therefore R has a finite limit R∞ at infinity. Since R∞ ≥ R0, R0 > 0
implies that R∞ > 0. From these inequalities the inequalities for the complex permittivity at
high and low frequencies follow. Assume for definiteness that R∞ exists.

Es := lim
ω→0

E(ω) = lim
p→0

[
pR̃(p)

] = R∞

E∞ := lim
ω→∞ E(ω) = lim

p→∞
[
pR̃(p)

] = R0

by an Abelian theorem [66], and therefore

E∞ ≤ Es (67)

where the subscript “s” stands for “static”.
The dielectric after-response of a finite isotropic homogeneous sample can be expressed

in terms of the function ϕ(t). If the electric field E is kept at a fixed value for a sufficiently
long period and then instantaneously switched off, then the polarization vector of the sample
decays according to the law:

P(t) = ϕ(t)P(0) (68)

The function ϕ satisfies the constraint ϕ(0) = 1 and therefore it satisfies the inequalities
0 ≤ ϕ(t) ≤ 1. Let Φ(t) = 1 − ϕ(t). The dielectric response can be expressed in the form

D(t) = ε0E(t) + P(t) = ε∞E(t) + Δε

∫ ∞

0
Φ(s)Ė(t − s)ds (69)
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where Δε = εs − ε∞ [54] and R(t) = ΔεΦ(t)I. Since Φ(0) = 0, (69) can also be expressed
in the following form

D(t) = ε∞E(t) + [εs − ε∞]
∫ ∞

0
Φ̇(s)E(t − s)ds (70)

The following theorem follows easily from the definition of Bernstein functions:

Theorem 4.5 If f ∈ M and 0 ≤ f (t) ≤ 1 for t > 0, then the function g defined on [0,∞[
by the equations g(t) := 1 − f (t), t > 0 and g(0) = 1 − f (0+) is a Bernstein function.

Consequently Φ (and therefore also R) is a Bernstein function if ϕ ∈ M and 0 ≤ ϕ(t) ≤ 1.
As an example, ϕ can be the stretched exponential function ϕ(t) = e−(t/τ )α , τ > 0, 0 < α ≤ 1
[18, 57].

4.2 Inversion of Passive Material Response Functions

The fundamental solution R2 of (49) is given by the equation in the distributions sense on R

�(t) ∗ R2(t) = δ(t)I (71)

If a solution R of (49) exists, then R2 = D2R is the second-order derivative of R in the
distributions sense.

If the function � is CPD (in particular, if the convolution operator �∗ is passive), then
the Laplace transform �̃ exists and (71) for a tempered distribution R2 is equivalent to the
algebraic equation

�̃(p)R̃2(p) = I (72)

Assume that � is passive and det �̃(p) �= 0 for Rep > 0. It follows that

Re R̃2(p) = R̃2(p)†
[
Re �̃(p)

]
R̃2(p) ≥ 0

hence the convolution operator R2∗ is passive and

R2(t) = δ(t)W + Dδ(t)A + K(t) + δ′′(t) [K(0) − K(t)]

where

K(t) =
∫

eiωtM(dω)

is CPD, M is a finite Borel measure, W† = −W, A = A† ≥ 0. Since the function K is contin-
uous, the function L(t) = ∫ t

0 ds
∫ s

0 K(u)du is well defined.
We are now ready to show that

R(t) = t+W + θ(t)A + L(t) + K(0) − K(t) (73)

Indeed, for an arbitrary test function v ∈ S(R;V ),

〈R,D2v〉 = Wv(0) + Av′(0) + 〈L,v〉 + 〈[K(0) − K(t)],D2v〉 = 〈R2,v〉
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Theorem 4.6 The class of distributional solutions of (49) for � ∈ P is given by (73) with
W† = −W, A† = A ≥ 0, K ∈ D, L = ∫ t

0 ds
∫ s

0 K(u)du.

Note that Re R̃(iω) = −(1 + ω2)Re K̃(iω)/ω2 ≤ 0.

4.3 Inversion of Positive Definite Material Response Functions

If � is CPD, then the second-order distributional derivative D2R is CPD and, by Bochner’s
theorem, there is a positive Radon tensor-valued measure H with the support contained in
[0,∞[, such that

D2R(t) =
∫ ∞

−∞
eiωtH(dω) = ΔH + R3(t) (74)

where ΔH := H({0}) ≥ 0 and

R3(t) :≡ 2 Re
∫

]0,∞[
eiωtH(dω) (75)

Hence, for t > 0,

DR(t) = B + tΔH + 2 Re
∫

]0,∞[

1

iω
eiωtH(dω)

= B + tΔH +
∫

]0,∞[

sin(ωt)

ω
H(dω) = B +

∫
[0,∞[

sin(ωt)

ω
H(dω)

= B +
∫ ∞

−∞

sin(ωt)

ω
H1(dω) (76)

where H1(U) = H(U)/2 for every Borel subset of R not containing 0, and H1({0}) = H({0}).
This observation suggests the following form of the response function R:

R(t) = A + tB +
∫

[0,∞[

1 − cos(ωt)

ω2
H(dω), t ≥ 0 (77)

where A = A, B = B ≥ 0. (76) is a generalization of Axiom (A2) in [60]. Note that (49)
implies that A �= 0. If the total variation |H|([0,∞[) of H is finite, then DR(t) = δ(t)A+R1(t)

and B = limt→0+ R1(t). R1 is locally integrable if
∫

[0,∞[ |H|(dω)/(1 + ω2) < ∞ [58].
The tensor A is the dielectric constant. The tensor B plays the role of the Newtonian

viscosity tensor in viscoelasticity. The inverse of �(t) = δ(t)B is t+B.
If B = 0, then the right-hand side of (77) can be extended to a negative definite tensor-

valued function Re : R \ {0} → M:

Re(t) = A + t2C +
∫

]0,∞[

1 − cos(ωt)

ω2
H(dω) (78)

where C ≥ 0 and H is a Radon measure on R+ satisfying the inequality
∫

]0,∞[

|H|(dω)

ω2
[1 − cos(ωt)] < ∞

and C = H({0}). The function Re is negative definite function on R [2] and the right-hand
side of (78) is similar to the Lévy-Khinchin representation of a real continuous negative
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definite function [2, 22]. In the theory of convolution semigroups negative definite functions
play the same role with respect to the positive definite functions as the Bernstein functions
do with respect to the CM functions.

If the total variation |H|([0,∞[) of the Radon measure H is finite, then the dielectric
response function is the distributional derivative of R

DR(t) = δ(t)A + θ(t)B +
∫

[0,∞[

sin(ωt)

ω
H(dω), t ≥ 0 (79)

The second-order distributional derivative is given by the formula

D2R(t) = Dδ(t)A + δ(t)B +
∫

[0,∞[
cos(ωt)H(dω) (80)

Note that DδA is positive definite (or, equivalently, semi-passive):
∫ ∞

−∞
φ(t)ADφ(t)dt = 1

2

[
φ(t)Aφ(t)

]∞
t=−∞ = 0

5 Application to Empirical Dielectric Response Functions

5.1 Introduction

Viscoelastic creep compliances of real media are without exception Bernstein functions.
Dielectric functions of dipolar dielectric media have the same property. On the other hand
Lorentz-dispersive dielectric functions have a non-monotone oscillatory behavior attribut-
able to molecular inertia [9, 10, 54]. Lorentz dispersion is however consistent with passivity
and therefore also with positive definiteness of dielectric relaxation functions. The effects
of molecular inertia are usually ignored in statistical models of viscoelastic relaxation in
polymers, based on the Smoluchowski equation [4, 14].

There is no convincing general argument in support of positivity of the relaxation spec-
trum, although some ad hoc statistical arguments in favor of specific models have been
advanced [49, 64, 65]. On the other hand statistical physics provides a fairly general ex-
planation of the positive definite property of �. According to the fluctuation-dissipation
theorem [42] the relaxation kernel is proportional to an auto-correlation function. If the
auto-correlation function can be expressed in terms of time averaging and if it is addition-
ally a continuous function, then it is a positive definite function ([19], Chap. 19). An example
of the fluctuation-dissipation formula in dielectric relaxation theory is the following relation
for the dipole moment m [10, 54]:

m(t) = A0E(t) +
∫ t

0
A(s)E(t − s)ds (81)

with A∞ − A(s) > 0, where A∞ := lims→∞ A(s). Statistical arguments yield the after-effect
function

B(s) := A∞ − A(s) = 1

3kT
Cm(s), s ≥ 0 (82)

where T denotes the absolute temperature, k is the Boltzmann constant and Cm is the auto-
correlation function

Cm(s) := lim
τ→∞

1

2τ

∫ τ

−τ

m(t + s) ⊗ m(t)dt (83)
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The integral in the above equation is positive definite and hence the limit is also positive
definite.

In the following subsections we give a few examples of phenomenological models of di-
electric relaxation functions which are either monotone or oscillatory and fit into one of the
formulations given above. A general dielectric loss exhibits several peaks (the α peak, pos-
sibly a β peak, and the phonon peak) [47]. Each of these peaks is attributable to a different
molecular relaxation mechanism and lies in a different frequency range. The dielectric sus-
ceptibility is obtained by summing the component dielectric susceptibilities associated with
different molecular relaxation mechanisms. The explicit models discussed below represent
the contributions of a single relaxation mechanism to the total relaxation spectrum and the
corresponding dielectric loss functions exhibit a single peak. The peaks of the dielectric loss
are however broadened with respect to the Debye model, which indicates that more than one
relaxation time is involved.

5.2 Dielectric Media with Positive Relaxation Spectra

In the Cole-Cole model the complex dielectric function has the following form

ẼCC(p) = ε̃(p)

p
= ε∞

p
+ 1

p

εs − ε∞
1 + (pτ0)α

= εs

p
− 1

p

(εs − ε∞)(pτ0)
α

1 + (pτ0)α
(84)

where 0 ≤ α ≤ 1 and εs ≥ ε∞ in accordance with (67). The time-domain dielectric relaxation
function can be expressed in terms of the Mittag-Leffler function

Eα(z) :=
∞∑

n=0

zn

Γ (αn + 1)
(85)

[15]. Applying the integral representation

∫ ∞

0
e−ptEα (−atα) dt = pα−1

a + pα
(86)

[52] to (84), it is easily shown that

ECC(t) = ε∞θ(t) + (εs − ε∞)
[
1 − Eα (−(t/τ0)

α)
]
θ(t) (87)

The Mittag-Leffler function in the second term is completely monotone [55] and bounded
by 1, hence ECC is a Bernstein function. Since E1(z) = ez, the limit α = 1 corresponds to
the Debye relaxation.

The same result can be obtained by applying Theorem 3.13. Let p = reiφ , 0 < φ < π .
Since

Im[pẼCC(p)] = − (τ0|p|)α sin(αφ)ε∞
|1 + (τ0p)α|2 ≤ 0

the derivative E ′
CC of ECC is completely monotone. Since ECC is also non-negative, it is a

Bernstein function.
From (19)

�̃CC(p) = 1

εs

[
1

p
+ (1 − Δ)

pα−1

1 + Δ(pτ0)α

]
(88)
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where

Δ := 1 − ε∞
εs

(89)

satisfies the inequalities 0 < Δ < 1. In the time domain

�CC(t) = 1

εs

[
1 + 1 − Δ

Δ
Eα

(
−

(
t

τ1

)α)]
θ(t) (90)

with τ1 := Δ1/ατ0, which is a completely monotone function [55]. The function ECC(t) is a
Bernstein function.

The Havriliak-Negami relaxation is a generalization of the Cole-Cole relaxation and it is
used to account for the asymmetry of the α peak in glass-forming materials:

ẼHN(p) = ε̃(p)

p
= ε∞

p
+ 1

p

εs − ε∞
[1 + (pτ0)α]β (91)

Let p = reiφ , r > 0, 0 < φ < π . For r → ∞ the right-hand side of Im[pẼ(p)] is asymp-
totically equal to −sin(αβφ)/(rτ0)

αβ . Hence for αβ > 1 the function E ′ is not completely
monotone and E is not a Bernstein function.

For β = 1 the Havriliak-Negami relaxation reduces to the Cole-Cole model, while for
α = 1 it is known as the Cole-Davidson model [11]. The latter is often used to represent
the asymmetric α peak in glass-forming materials, in contrast to the Cole-Cole relaxation
modeling symmetric non-Debye peaks of the imaginary part of the complex dielectric per-
mittivity.

The Havriliak-Negami relaxation function EHN can be expressed in terms of the Prab-
hakar generalized Mittag-Leffler function [53]

E
γ

α,β(z) :=
∞∑

n=0

Γ (γ + n)

Γ (γ )Γ (αn + β)n!z
n (92)

for Reα > 0, Reβ > 0 (Appendix B). Applying the identity (132) to (91) yields an explicit
expression for the Havriliak-Negami relaxation:

EHN(t) =
{
ε∞ + (εs − ε∞)

[
1 − (t/τ0)

αβE
β

α,1+αβ

(
−

(
t

τ0

)α)]}
θ(t) (93)

The function f (t) := E
β

α,1(−tα) is completely monotone if 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. Indeed,

the Laplace transform f̃ of f is

f̃ (p) = 1

p (1 + p−α)β

Hence Im[pf̃ (p)] = Im[1 + r−αeiαφ]β/|1 + p−α|2β , where p = reiφ . In the upper half C+
of the principal Riemann sheet of the complex p-plane 0 < φ < π . Since 0 ≤ α ≤ 1, the
complex number z := r−αeiαφ as well as 1 + z lies in C+. Hence (1 + z)β ∈ C+, and
Im[pf̃ (p)] ≥ 0. Consequently f is CM under the restrictions on α,β assumed above. Since
E

β

α,1(0) = 1, the function 1 − E
β

α,1(−(t/τ0)
α) is nonnegative and its derivative is completely

monotone. This completes the proof that EHN is a Bernstein function if 0 ≤ α,β ≤ 1 and its
counterpart �HN is completely monotone.
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The relaxation models of Cole-Cole, Cole-Davidson and Havriliak-Negami are distin-
guishable by inspection of their Cole-Cole plots. The Cole-Davidson relaxation differs from
the Cole-Cole and Havriliak-Negami by an exponential decay. In fact, for each of these
relaxation models the relaxation function can be expressed in terms of a complex contour
integral along a Hankel loop H encircling the cut on the negative real axis and hence to the
Laplace transform of the jump of the complex permittivity on the cut:

E(t) = 1

π

∫ ∞

0

Im ε(reiπ )

r
e−rt dr (94)

In contrast to the Cole-Cole and Havriliak-Negami models the cut for the Cole-Davidson
model starts at −1/τ0 which implies that the lower limit of integration in (94) can be shifted
to 1/τ0. It follows immediately that the Cole-Davidson relaxation ECD decays faster that
e−t/τ0 . On the other hand the algebraic decay rates of the Cole-Cole and Havriliak-Negami
models can be obtained from the behavior of the complex dielectric permittivity at low
frequency by applying the Karamata Abelian theorems [13, 66].

Dielectric response functions can also be expressed in terms of the Fox function in both
time and frequency domain [35].

The Kohlrausch-Watts-Williams (KWW) relaxation function, also known as the stretched
exponential,

�(t) = �KWW(t) := bθ(t)e−(t/τ0)α (95)

τ0, b > 0, was originally introduced by Williams and Watts for the phenomenological de-
scription of dielectric relaxation in [67, 68], cf. [12] for more recent references. While most
phenomenological models of the dielectric response are primarily expressed in the frequency
domain, the KWW response is an exception. Its Laplace transform is a rather complicated
expression involving the hypergeometric functions, except for α = 1/2, in which case

�̃(p) = 1

p

[
1 − e1/(4p)π1/2 erfc(−1/(2p1/2))

2p1/2

]
(96)

The KWW response function is completely monotone if 0 ≤ α ≤ 1. Indeed, the function
e−(t/τ0)α is the Laplace transform of a Lévy stable one-sided probability density pα [48]

�KWW(t) = τ0

∫ ∞

0
pα(rτ0)e

−rt dr, t ≥ 0 (97)

and hence the Bernstein theorem implies that �KWW is a CM function. The behavior of
�KWW for small t is similar to �CC. For large t the KWW relaxation function has an al-
most exponential decay, as opposed to the algebraic decay of its Cole-Cole counterpart. The
Fourier transform of the KWW relaxation function is often used as an alternative model of
the asymmetric α peak in glass-forming materials [37].

For α ≥ 1 the stretched exponential is no longer a completely monotone function. For 0 ≤
α ≤ 2 the stretched exponential is a CPD function. For α = 2 this follows from the Bochner
theorem. For 1 < α < 2 the function |x|α is a negative definite function and the stretched
exponential is CPD by a theorem of Schoenberg (a proof can be found in Appendix D). For
α > 2 the stretched exponential is not a CPD function.

It is also worth noting that f (t) := 1 − exp(−(t/τ )α), t ≥ 0, is a Bernstein function for
0 < α ≤ 1. Indeed, f (t) ≥ 0 and f ′(t) = α(t/τ )α−1 exp(−(t/τ )α) is the product of two CM
functions, hence it is CM.



294 A. Hanyga, M. Seredyńska

A detailed investigation of the properties of the stretched exponential can be found
in [1, 36].

A related example is the generalized Bordewijk model [5]

�(t) = �B(t) := be−t/τ1−(t/τ0)α (98)

with b, τ0, τ1 > 0. The function �B can be expressed in terms of the α-stable Lévy proba-
bility density pα

�KWW(t) = τ0

∫ ∞

1/τ1

pα((r − 1/τ1)τ0)e
−rt dr (99)

which demonstrates that it is also completely monotone for 0 < α < 1.

5.3 Anisotropic Dielectric Response Functions with Positive Relaxation Spectrum

The simplest anisotropic relaxation models of dielectric relaxation can be constructed by
superposing scalar relaxations:

�(t) =
3∑

k=1

λk(t)Pk (100)

R(t) =
3∑

k=1

εk(t)Pk (101)

where Pk are constant projection operators on R
3, PkPl = 0 if k �= l, P2

k = Pk ,
∑3

k=1 Pk = I
and λk ∗εk(t) = t+, k = 1,2,3. � (R) is CM (BF, respectively) if and only if the functions λk

(εk , respectively) are CM. The theory developed in Sects. 3.3 and 4 allows for more general
CM (BF) anisotropic functions � (R, respectively), as demonstrated by an example in [32].

5.4 Dielectric Response with Non-positive Relaxation Spectra (Lorentz-Dispersive
Dielectric Media)

Inertial effects associated with molecule rotation play an important role in metals and ionic
crystals. They are accounted for in the following generalization of the Van Vleck-Weisskopf-
Fröhlich model [54]

E(t) := Δ
[
a − f (t)

]
θ(t), μ, γ > 0 (102)

f (t) = e−γ t cos(μt), Δ > 0, a ≥ 1 (in the Van Vleck-Weisskopf-Fröhlich model a = 1).
The function E is negative definite (Theorem C.1). The Laplace transform of E is

Ẽ(p) =
[

a

p
− p + γ

(p + γ )2 + μ2

]
Δ

Equation (41) is satisfied if γ ≥ 0. Since

λ̃(iω) = −1/
[
ω2Ẽ(iω)

]
it is easy to see from Theorem 3.6 that λ ∈ D. E is a Bernstein function if a ≥ 1 and μ = 0.
If μ = 0, then

λ̃(p) = p + γ

p[(a − 1)p + aγ ] (103)
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Hence Re λ̃(iω) = γ /[(a − 1)2ω2 + a2γ 2] ≥ 0 for all ω ∈ R, in accordance with (41) and
with Theorem 3.6 (ii). If a �= 1, then λ̃(iω) → 0.

In particular, if a = 1 then

E(t) = 1 − e−γ t , γ > 0

�̃(p) = 1

γ
+ 1

p

�(t) = 1

γ
δ(t) + θ(t)

The Drude-Lorentz complex permittivity is in the simplest case given by the formula

ε(p) = ε0 + a

b + τ 2p2 + τp
(104)

with a, b, ε0 > 0. Since Re[pε(p)] ≥ 0 for Rep > 0, D2R is CPD and R is negative definite.

6 Energy Density Functionals Based on Spectral Properties of the Dielectric and
Magnetic Response Functions

6.1 The Energy Functional

We shall attempt to define the energy density functional U of the electromagnetic field
interacting with matter in such a way that the constitutive equations imply the inequality

W ≥ U̇ (105)

where W is the electromagnetic power, defined in Sect. 2. The difference D := W − U̇ is
identified as the energy dissipation rate.

We note here that an alternative choice of the electromagnetic energy density functional,
such as

U1 = ε0

2
E2 + 1

2ε0
B2

[51] with the energy flux density

S1 = ε0 [E × H]

is not appropriate for our approach because

U̇1 + div S1 = −E · Jtot = −E · J − E · Jbound

involves the displacement current Jbound, which is not a controllable variable.
We shall give rigorous derivations of two different energy density functionals. The first

one (Sect. 6.2) leads to a total energy which is strictly dissipated, while the second one
(Sect. 6.3) is such that the total energy is a constant of motion.

By isolating the energy density from the energy-momentum density we have implicitly
committed ourselves to a fixed reference frame. This frame can be thought of as the rest
frame of the material medium. The theory is however implicitly non-relativistic for yet an-
other reason: the constitutive equations involve convolution in the time variable only.
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6.2 A Dissipative Energy Density and a Dissipation Rate Functional

It is well-known that given a linear constitutive equations of a dispersive medium, (105) does
not determine a unique energy density functional [6, 44]. A special energy density functional
can however be associated with the LICM class of response functions �,N. According to
the Bernstein theorem there are two non-decreasing tensor-valued functions �,P such that

�(t) =
∫

[0,∞[
e−ξ t�(dξ) (106)

N(t) =
∫

[0,∞[
e−ξ tP(dξ) (107)

Since the matrices �(t),N(t) are symmetric for t ≥ 0, the theorem about the inversion of
the Laplace-Stieltjes transform [66] implies that the matrices �(ξ), P(ξ) are symmetric for
all ξ ≥ 0. We shall define two auxiliary fields

y(t, ξ) :=
∫ t

−∞
e−ξ(t−s)Ḋ(s)ds (108)

z(t, ξ) :=
∫ t

−∞
e−ξ(t−s)Ḃ(s)ds (109)

so that, in view of (106, 107),

E(t) =
∫

[0,∞[
�(dξ)y(t, ξ) (110)

H(t) =
∫

[0,∞[
P(dξ)z(t, ξ) (111)

The auxiliary fields y, z satisfy the differential equations

dy
dt

+ ξy(t, ξ) = Ḋ(t) (112)

dz
dt

+ ξz(t, ξ) = Ḃ(t) (113)

The energy density functional UD is defined by the formula

UD(t) = 1

2

∫
[0,∞[

[
y(t, ξ)†�(dξ)y(t, ξ) + z(t, ξ)†P(dξ)z(t, ξ)

]
(114)

The rate of the energy density

U̇D(t) =
∫

[0,∞[

[
y,t (t, ξ)†�(dξ)y(t, ξ) + z,t (t, ξ)†P(dξ)z(t, ξ)

]

= EḊ + HḂ − D(t)

where the intrinsic dissipation rate D defined by the formula

D(t) :=
∫

[0,∞[
ξ

[
y(t, ξ)†�(dξ)y(t, ξ) + z(t, ξ)†P(dξ)z(t, ξ)

] ≥ 0 (115)
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represents the dissipation associated with the dispersive properties of the dielectric medium.
On account of the Poynting identity

U̇ = div(E × H) − D − JE, D ≥ 0 (116)

6.3 A Conserved Energy Density Functional for Positive Definite Response Functions

We shall show that in the absence of electric current and external energy sources the
Maxwell equations of motion have an integral of motion which can be interpreted as an
energy [58]. The appropriate energy density functional will be derived from the Fourier in-
tegral representation of �. In contrast to the Laplace-Stieltjes representation, which applies
only to LICM D-to-E kernels, the Fourier representation remains valid in the dielectric me-
dia with a bounded response function � in the CPD class. In particular, a bounded LICM
function is CPD and satisfies the Bochner theorem. This means that an arbitrary dielec-
tric which is a perfect insulator admits a conserved energy. With an appropriate choice of
canonical variables this energy becomes a Hamiltonian with respect to a canonical Poisson
bracket, but we shall not pursue this subject here.

The CPD kernels �(t) and N(t) are real tensor-valued and therefore they can be ex-
pressed as the real parts of one-sided Fourier integrals of positive definite tensor-valued
Radon measures S,T:

�(t) = Re
∫

[0,∞[
eiζ tS(dζ )

N(t) = Re
∫

[0,∞[
eiζ tT(dζ )

Define the energy density functional UC by the formula

UC(t) := 1

2

∫
[0,∞[

[
u(t, ζ )†S(dζ )u(t, ζ ) + v(t, ζ )†T(dζ )v(t, ζ )

]
(117)

where the auxiliary fields

u(t, ζ ) :=
∫ t

−∞
eiζ(t−s)Ḋ(s)ds (118)

v(t, ζ ) :=
∫ t

−∞
eiζ(t−s)Ḃ(s)ds (119)

satisfy the ordinary differential equations

u̇ + iζu = Ḋ (120)

v̇ + iζv = Ḃ (121)

It is easy to see that

dUC

dt
= EḊ + HḂ = div(E × H) − JE (122)

Note that there is no intrinsic dissipation associated with this notion of energy density. The
real part uR and the imaginary part uI of u satisfy the equations

üR + ζ 2uR = D̈ (123)
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üI + ζ 2uI = −ζ Ḋ (124)

which shows that the auxiliary fields represent a one-parameter family of field-driven oscil-
lators.

A conserved viscoelastic energy functional is considered in [31]. It is shown that the
dissipated energy resides in a continuum of oscillators driven by the strain rate. A similar
result was obtained for dielectrics by Tip [60] by a different argument. In [60] the oscillators
are interpreted as representing the energy of matter interacting with the pure electromagnetic
field. The rate of the energy density can be decomposed into two terms

dUD

dt
= dU0

dt
+ EṖ + HQ0Ṁ

where U0 := (1/2)(ER0E + HQ0H) by splitting the electric displacement field and mag-
netic induction field into the free space fields, polarization and magnetization,

D = R0E + P (125)

B = Q0(H + M) (126)

where R0 = R(0), Q0 = Q(0) [59]. U0 can be interpreted as the energy density of the pure
electromagnetic field. Existence of a conserved total energy implies that the sum of the
second and third term on the right-hand side represents the rate of the energy of the matter
subsystem.

A fairly straightforward derivation of the conserved energy can be found in [25]. It is
based on a different assumption and is not sufficiently rigorous. An important contribution
of [25] is showing that the energy U0 of the pure field may propagate at superluminal speed.

Stallinga extended Tip’s method to energy-momentum conservation in [59]. Notwith-
standing the extension to energy-momentum conservation, Stallinga’s theory remains non-
relativistic because the constitutive equations are formulated in terms of time convolutions.

7 Conclusions

Dissipative properties of dielectric relaxation can be ensured by assuming that the dielectric
response functions have some particular spectral properties. These assumptions are neces-
sarily much stronger than positive semi-definiteness of the dielectric loss. It has been shown
that in the case of Lorentz dispersion the dielectric response function is negative definite.
A narrower class of admissible response functions is obtained from the assumption that the
D-to-E constitutive relation is a passive system. Dipolar dielectrics have a non-negative re-
laxation spectrum and therefore the corresponding dielectric relaxation functions belong to
the class of Bernstein functions, which is a proper subset of the class of negative definite
functions. A relation between the D-to-E constitutive equation and the more familiar E-to-
D constitutive equation is established. It is shown that empirical and theoretical models of
dielectric response are consistent with the proposed theoretical framework.

All the three classes of dielectric response are compatible with the existence of a con-
served energy. The expression for the conserved energy obtained here is general and rigor-
ous, as opposed to the Brillouin energy [8, 44]. LICM response functions additionally admit
an energy that decays monotonely in a closed system.

Acknowledgements The authors are indebted to the reviewers for their comments and for pointing out the
paper of Hilfer (2002).
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Appendix A: Two Lemmas Needed in the Proof of Theorem 4.2

Lemma A.1 If f,g : U → R and f (x) ≤ g(x) for all in U ⊂ R then

sup
U

f (x) ≤ sup
U

g(x) (127)

inf
U

f (x) ≤ inf
U

g(x) (128)

Proof If the supremum of f is reached at x0 ∈ U then supf (x) = f (x0) ≤ g(x0) ≤ g(x),
else there is a sequence xn ∈ U such that

supf (x) ≤ f (xn) + 1/n ≤ g(xn) + 1/n ≤ supg(x) + 1/n

for all n ∈ Z+, which proves (127).
For the infimum we have inff (x) ≤ f (x0) ≤ g(x0) = infg(x) if g(x) reaches its mini-

mum at x0 ∈ U and

inff (x) − 1/n ≤ f (xn) − 1/n ≤ g(xn) − 1/n ≤ infg(x)

otherwise. This proves (128). �

Lemma A.2 The eigenvalues μn of p�̃(p) are non-decreasing functions of p ∈ ]0,∞[.

Proof Let 0 < p1 < p2. For every v ∈ C
d

v†p1�̃(p1)v ≤ v†p2�̃(p2)v

hence, by the Courant-Fischer formula,

μn(p) = sup
dimV =n

inf
v∈V ∩S1

〈v,p�̃(p)v〉 (129)

[43] and Lemma A.1, μn(p1) ≤ μn(p2), which proves that μn is a non-decreasing function
of p. �

Appendix B: The Prabhakar Mittag-Leffler Function and its Laplace Transform

Let α,β > 0. Substituting the series representation of the Prabhakar generalized Mittag-
Leffler function in the Laplace transformation yields the identity

∫ ∞

0
e−pt tβ−1E

γ

α,β (atα) dt = p−β

∞∑
n=0

Γ (γ + n)

Γ (γ )n!
(

a

pα

)n

(130)

On the other hand

(1 + z)−γ =
∞∑

n=0

Γ (1 − γ )

Γ (1 − γ − n)n!z
n =

∞∑
n=0

(−1)n Γ (γ + n)

Γ (γ )n! zn (131)
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Comparison of (130) and (131) yields the Laplace transform

∫ ∞

0
e−pt tβ−1E

γ

α,β (atα) dt = p−β 1

(1 − ap−α)γ (132)

Equation (132) holds for Reα > 0, Reβ > 0.

Appendix C: Positive Definite and Negative Definite Functions

A function f : R → M is positive definite if

N∑
k,l=1

f (xk − xl)ykyl ≥ 0

for all N ∈ Z+, all xk ∈ R and all yk ∈ C, 1 ≤ k ≤ N .
A function g : R → M is negative definite if

N∑
k,l=1

f (xk − xl)ykyl ≤ 0

for all N ∈ Z+, all xk ∈ R and all yk ∈ C, 1 ≤ k ≤ N , such that
∑N

k=1 yk = 0.
Both definitions can be extended to Abelian groups with involution (x → −x is the invo-

lution in R in the definition given above). Taking the involution to be the identity, the posi-
tive definite functions and the negative definite functions become the completely monotone
functions and the Bernstein functions respectively under some provisions.

Theorem 4.5 has a counterpart in the class of negative and positive definite functions [3]:

Theorem C.1 If the function f is PD and f (t) ≤ a, then a − f (t) is negative definite.

Theorem C.1 is a trivial generalization of Corollary 7.7 in [3].
A real-valued negative definite function g bounded from below has the Lévy-Khinchin

integral representation:

g(x) = g(0) + ax2 +
∫

]0,∞[

[
1 − cos(xy)

]
m(dy) (133)

where a ≥ 0 and the Lévy measure m is a positive measure on R+ satisfying the inequality
∫

]0,∞[

[
1 − cos(xy)

]
m(dy) < ∞

[2, 22]. Equation (133) follows from Theorem 4.3.19 in [2]. In terms of the measure μ(dy) =
y2m(dy), with μ({0}) = 2a, we have

g(x) = g(0) +
∫

[0,∞[

1 − cos(xy)

y2
μ(dy)

The concept of negative definite functions and the representation (133) can be extended
to matrix- and tensor-valued functions by the usual argument.
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Let F : R+ → M be a continuous causal positive definite function. Let

G(s) =
{

F(s), s ≥ 0
F(−s)†, s < 0

(134)

Equation (33) is equivalent to

∫ ∞

−∞

[∫ ∞

−∞
v(t)†G(s)v(t − s)ds

]
dt ≥ 0 (135)

Appendix D: Proof of a Theorem on the Stretched Exponential

It is easy to see that x2 is a negative definite function on R. Consequently x → exp(−ax2)

is positive definite on R and x → 1 − exp(−ax2) is negative definite on R for every a ≥ 0.
The measure m(da) := a−1−α/2 da satisfies the inequality

∫
[0,∞[

a

1 + a
m(da) < ∞

hence the integral in

xα = (x2)α/2 = α

2Γ (1 − α/2)

∫ ∞

0

(
1 − e−ax2

)
m(da)

is well-defined and is negative definite on R for 0 < α ≤ 2. Consequently x → e−xα
is

positive definite on R and, therefore, the function x → θ(x)e−xα
is positive definite if 0 <

α ≤ 2.
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33. Hanyga, A., Seredyńska, M.: A rigorous construction of maximum recoverable energy. Z. Angew. Math.

Phys. (2007). doi:10.1007/s00033-007-7020-z
34. Havriliak, S., Havriliak, S.J.: Dielectric and Mechanical Relaxation in Materials. Analysis, Interpretation

and Application to Polymers. Hanser, Munich (1997)
35. Hilfer, R.: Analytical representations for relaxation functions of glasses. J. Non-Cryst. Solids 305, 122–

125 (2002)
36. Husain, S.A., Anderssen, R.S.: Modelling the relaxation modulus of linear viscoelasticity using

Kohlrausch functions. J. Non-Newton. Fluid Mech. 125, 159–170 (2005)
37. Jäckle, J.: Rep. Prog. Physics 49, 171 (1986)
38. Jackson, D.J.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)
39. Jonscher, A.K.: Dielectric Relaxation in Solids. Chelsea, New York (1983)
40. Jonscher, A.K.: Universal Relaxation Law. Chelsea, New York (1996)
41. König, H., Meixner, J.: Lineare Systeme und lineare Transformationen. Math. Nachr. 19, 265–322

(1958)
42. Kubo, R., Toda, N., Hashitsune, N.: Statistical Physics II: Nonequilibrium Statistical Physics, 2nd edn.

Springer, Berlin (1991)
43. Lancaster, P.: Theory of Matrices. Academic Press, San Diego (1969)
44. Landau, L.D., Lifshits, E.M.: Pitaevski: Electrodynamics of Continuous Media. Pergamon, Oxford

(1984). Translated from Russian
45. Lu, J.F., Hanyga, A.: Wave field simulation for heterogeneous porous media with a singular memory

drag force. J. Comput. Phys. 208, 651–674 (2005). doi:10.1016/j.jcp.2005.03.008
46. Lu, J.F., Hanyga, A.: Wave field simulation for heterogeneous transversely isotropic porous media with

the JKD dynamic permeability. Comput. Mech. 36, 196–208 (2005). doi:10.1007/s00466-004-0653-3
47. Lunkenheimer, P., Loidl, A.: Dielectric spectroscopy of glass-forming materials: α-relaxation and excess

wing. Chem. Phys. 284, 205–219 (2002)
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